next up previous contents
Next: 4.3 Laguerre'sche Funktionen Up: 4. Orthogonale Funktionensysteme Previous: 4.1 Trigonometrische Funktionen   Inhalt

4.2 Hermite'sche Polynome

Energieeigenfunktionen des harmonischen Oszillators in der Quantenmechanik4.1

fn = Hn(x) mit 0 $\displaystyle \leq$ n $\displaystyle \leq$ $\displaystyle \infty$ (4.5)

Nn2 = $\displaystyle {1\over {2^n n! \sqrt{\pi}}}$    a = - $\displaystyle \infty$,    b = + $\displaystyle \infty$    w(x) = e-x2 (4.6)

H0(x) = 1        H1(x) = 2x        H2(x) = 4x2 - 2        H3(x) = 8x3 - 12x (4.7)

allgemein:

Hn(x) = (- 1)nex2$\displaystyle {d^n \over {dx^n}}$e-x2 (4.8)

H2n + 1(0) = 0        H2n(0) = $\displaystyle {{(-1)^n(2n)!} \over n!}$ (4.9)

Rekursionsformel zur Berechnung:

Hn + 1(x) = 2xHn(x) - 2nHn - 1(x) (4.10)

$\displaystyle \left(\vphantom{{d^2 \over {dx^2}} -2x {d \over {dx}} + 2n }\right.$$\displaystyle {d^2 \over {dx^2}}$ - 2x$\displaystyle {d \over {dx}}$ + 2n$\displaystyle \left.\vphantom{{d^2 \over {dx^2}} -2x {d \over {dx}} + 2n }\right)$Hn(x) = 0 (4.11)



Alexander Wagner
2000-04-14