next up previous contents
Next: 8.2 Relativitätstheorie Up: 8. Elektrodynamik Previous: 8. Elektrodynamik   Inhalt

8.1 SI und cgs

SI (MKSA) Gauß'sche Einheiten (cgs)
$\displaystyle \nabla$ . $\displaystyle \vec{E}\,$ = $\displaystyle {\rho \over {\epsilon_0}}$ $\displaystyle \nabla$ . $\displaystyle \vec{E}\,$ = 4$\displaystyle \pi$$\displaystyle \rho$
$\displaystyle \vec{E}\,$ = $\displaystyle {1 \over {4 \pi \epsilon_0}}$$\displaystyle \int_{V}^{}$$\displaystyle {{\rho \vec{r}} \over
{r^3}}$dV $\displaystyle \vec{E}\,$ = $\displaystyle \int_{V}^{}$$\displaystyle {{\rho \vec{r}} \over
{r^3}}$dV
$\displaystyle \nabla$ x $\displaystyle \vec{E}\,$ = - $\displaystyle {{\partial \vec{B}}\over {\partial t}}$ c$\displaystyle \nabla$ x $\displaystyle \vec{E}\,$ = - $\displaystyle {{\partial \vec{B}}\over {\partial t}}$
$\displaystyle \vec{E}\,$ = - $\displaystyle \nabla$$\displaystyle \phi$ - $\displaystyle {{\partial \vec{A}}\over {\partial t}}$ $\displaystyle \vec{E}\,$ = - $\displaystyle \nabla$$\displaystyle \phi$ - $\displaystyle {1 \over c}$$\displaystyle {{\partial \vec{A}}\over {\partial t}}$
$\displaystyle \nabla$ x $\displaystyle \vec{B}\,$ = $\displaystyle \mu_{0}^{}$$\displaystyle \left(\vphantom{j + \epsilon_0 {{\partial E}\over
{\partial t}} }\right.$j + $\displaystyle \epsilon_{0}^{}$$\displaystyle {{\partial E}\over
{\partial t}}$ $\displaystyle \left.\vphantom{j + \epsilon_0 {{\partial E}\over
{\partial t}} }\right)$ $\displaystyle \nabla$ x $\displaystyle \vec{B}\,$ = 4$\displaystyle \pi$j + $\displaystyle {1 \over c}$$\displaystyle {{\partial E}\over
{\partial t}}$
$\displaystyle \vec{B}\,$ = $\displaystyle {\mu_0 \over {4 \pi}}$$\displaystyle \int$$\displaystyle {{\left( j + \epsilon_0
{{\partial E}\over {\partial t}}\right) \times \vec{r}}\over {r^3}}$dV $\displaystyle \vec{B}\,$ = $\displaystyle \int$$\displaystyle {{\left( j + {1 \over {4 \pi c}}
{{\partial E}\over {\partial t}}\right) \times \vec{r}}\over {r^3}}$dV
$\displaystyle \nabla$ . $\displaystyle \vec{B}\,$ = 0 $\displaystyle \nabla$ . $\displaystyle \vec{B}\,$ = 0
$\displaystyle \vec{B}\,$ = $\displaystyle \nabla$ x $\displaystyle \vec{A}\,$ $\displaystyle \vec{B}\,$ = $\displaystyle \nabla$ x $\displaystyle \vec{A}\,$
$\displaystyle \nabla$ . $\displaystyle \vec{j}\,$ + $\displaystyle {{\partial \rho}\over {\partial t}}$ = 0 $\displaystyle \nabla$ . $\displaystyle \vec{j}\,$ + $\displaystyle {1 \over c}$$\displaystyle {{\partial \rho}\over {\partial t}}$ = 0
$\displaystyle \nabla$ . $\displaystyle \vec{A}\,$ + $\displaystyle {1 \over c^2}$$\displaystyle {{\partial \phi}\over {\partial
t}}$ = 0 $\displaystyle \nabla$ . $\displaystyle \vec{A}\,$ + $\displaystyle {1 \over c}$$\displaystyle {{\partial \phi}\over {\partial
t}}$
$\displaystyle \vec{F}\,$ = e($\displaystyle \vec{E}\,$ + $\displaystyle \vec{u}\,$ x $\displaystyle \vec{B}\,$) $\displaystyle \vec{F}\,$ = e($\displaystyle \vec{E}\,$ + $\displaystyle {1 \over c}$$\displaystyle \vec{u}\,$ x $\displaystyle \vec{B}\,$)
$\displaystyle {{\partial F^{ij}}\over {\partial x^i}}$ = $\displaystyle {{j^j}\over {\epsilon_0}}$ $\displaystyle {{\partial F^{ij}}\over {\partial x^i}}$ = 4$\displaystyle \pi$jj
wobei wobei
Fij = $ \left(\vphantom{
\begin{array}{cccc}
0 & -c B_z & c B_y & +E_x \\
c B_x & 0 &...
...\
-c b_y & c B_x & 0 & + E_z \\
-E_x & -E_y & -E_z & 0\\
\end{array}}\right.$$ \begin{array}{cccc}
0 & -c B_z & c B_y & +E_x \\
c B_x & 0 & -c B_z & +E_y \\
-c b_y & c B_x & 0 & + E_z \\
-E_x & -E_y & -E_z & 0\\
\end{array}$ $ \left.\vphantom{
\begin{array}{cccc}
0 & -c B_z & c B_y & +E_x \\
c B_x & 0 &...
...\
-c b_y & c B_x & 0 & + E_z \\
-E_x & -E_y & -E_z & 0\\
\end{array}}\right)$ Fij = $ \left(\vphantom{
\begin{array}{cccc}
0 & - B_z & B_y & +E_x \\
B_x & 0 & -B_...
...y \\
- b_y & B_x & 0 & + E_z \\
-E_x & -E_y & -E_z & 0\\
\end{array}}\right.$$ \begin{array}{cccc}
0 & - B_z & B_y & +E_x \\
B_x & 0 & -B_z & +E_y \\
- b_y & B_x & 0 & + E_z \\
-E_x & -E_y & -E_z & 0\\
\end{array}$ $ \left.\vphantom{
\begin{array}{cccc}
0 & - B_z & B_y & +E_x \\
B_x & 0 & -B_...
...y \\
- b_y & B_x & 0 & + E_z \\
-E_x & -E_y & -E_z & 0\\
\end{array}}\right)$



Alexander Wagner
2000-04-14